Épreuve de physique du BTS 2000

On souhaite étudier l'évolution de la température de l'eau d'un ballon d'eau chaude, de volume $V = 300 \, L$, pendant les heures creuses de l'après-midi de 14h à 17h.

Avant 14 h, une famille utilisé en moyenne V' = 200 L d'eau chaude issue du ballon. L'eau utilisée est alors remplacée par de l'eau froide à la température θ_e .

On suppose le ballon parfaitement calorifugé et l'eau chauffée par une résistance dont la température θ_r est uniforme.

On donne:

- Coefficient d'échange convectif : $h = 3 \text{ kW} \cdot \text{m}^{-2} \cdot \text{K}^{-1}$
- Surface de l'échange convectif : S = 2 000 cm²
- Capacité thermique massique de l'eau : $c = 4 180 \text{ J.kg}^{-1}$. K $^{-1}$
- Température de l'eau froide : $\theta_e = 10$ °C
- Température de l'eau chaude : $\theta_r = 70 \,^{\circ}\text{C}$
- Masse volumique de l'eau : 1 000 kg.m⁻³
- 1° question : a) On suppose qu'à 14 h la température de l'eau est uniforme. Montrer qu'elle vaut $\theta_m = 30$ °C.
- b) En déduire l'énergie nécessaire pour amener l'eau du ballon à la température θ_r .
- c) Calculer la puissance minimale P_{mini} du chauffage pour que l'eau soit chaude à 17 h.
- **2° question** : L'échange de chaleur entre la résistance et l'eau se fait uniquement par convection entre l'eau et la résistance de température θ_r . La quantité de chaleur δQ_1 fournie par le chauffage pendant une durée dt est liée à la température θ de l'eau par la relation : $\delta Q_1 = h S(\theta_r \theta) dt$. Vérifier que cette relation respecte l'équation aux dimensions.
- b) Donner l'expression littérale de la quantité de chaleur δQ_2 nécessaire pour faire passer une masse d'eau m de θ à θ + d θ .
- 3° question : a) En faisant un bilan. d'énergie, montrer que l'équation régissant l'évolution de la température dans le ballon s'écrit : $\tau \frac{d\theta}{dt} + \theta = \theta_r$ avec $\tau = \frac{m c}{h s}$
- b) Montrer que l'unité de τ est la seconde et calculer sa valeur.
- c) Vérifier que $\theta(t) = (\theta_m \theta_r) e^{-\frac{t}{\tau}} + \theta_r$ est solution de l'équation différentielle où θ_m est la température de l'eau à 14 h. Donner l'allure de $\theta(t)$.
- 4° question : a) Calculer la température de l'eau après 2h30 de chauffage. Que peut-on en conclure ?
- b) En déduire la puissance moyenne du chauffage.