
Épreuve de physique B.T.S. 95

On trouve, sur la fiche signalétique d'un chauffe eau à accumulation, les renseignements suivants :

- capacité du ballon : V = 200 L ;
- puissance de chauffage : P = 2000 W.

La courbe ci-contre donne la valeur des pertes thermiques en fonction de l'écart de température 40 $(\theta - \theta_e)$ entre l'eau du ballon (θ) et la température ambiante (θ_e) .

A - On néglige les pertes.

- **1° question** : Calculer l'énergie nécessaire pour amener l'eau de 10 °C à 60 °C sachant que l'on peut négliger la capacité thermique du ballon.
- **2°** question : En déduire la durée t_o nécessaire pour cette opération.

B - On tient compte des pertes liées à la réalisation technologique du ballon.

- **1**° **question** : A partir du graphique ci-dessous, exprimer en watts les pertes thermiques notées p, en fonction de l'écart de température $(\theta \theta_e)$.
- 2° question : a) Pour une masse m d'eau exprimer la quantité de chaleur nécessaire pour élever sa température de $d\theta$.
- b) Exprimer la quantité de chaleur perdue pendant une durée dt.
- c) En déduire que la quantité de chaleur fournie, par le chauffage, pendant une durée dt, est donnée par : P dt = m c d θ + a (θ θ_e) dt avec a : constante déterminée à la question B 1°)
- $\boldsymbol{3}^{\circ}$ question : Exprimer dt en fonction de $d\theta$, $(\theta$ θ_{e}) , P, m, c et a.

En déduire la durée Δt nécessaire pour amener cette masse m d'eau de θ_e = 10 °C à θ = 60 °C .

4° question : Comparer avec le résultat de A 2°). Conclure sur l'isolation du réservoir.

Données : $c_{eau} = 4180 \text{ J.kg}^{-1}.\text{K}^{-1}$: capacité thermique massique de l'eau (ou chaleur massique) $\rho_{eau} = 1\,000 \text{ kg.m}^{-3}$: masse volumique de l'eau

$$\theta_e = 10 \,^{\circ} \text{C}$$

on posera
$$\Delta t = \int_{t_1}^{t_2} dt$$
 et $\int_{\theta_1}^{\theta_2} \frac{K d\theta}{A - B \theta} = \frac{K}{B} \left(Ln[A - B\theta] \right)_{\theta_1}^{\theta_2}$