BTS MAVA chimie 2004

Véhicules automobiles et gaz à effet de serre

Le parc automobile actuel est constitué essentiellement de deux types de véhicules :

Les véhicules de type V₁, muni d'un moteur à allumage commandé, consommant de l'essence.

Les véhicules de type V₂, muni d'un moteur à allumage par compression consommant du gazole.

Ces véhicules rejettent, tous, dans l'atmosphère des produits polluants et des gaz à effet de serre, malgré les dispositifs permettant de les limiter.

L'une des alternatives est le véhicule de type V_3 , muni d'une pile à combustible : le combustible est du dihydrogène, le comburant étant toujours le dioxygène de l'air.

Données:

Masses molaires (en g.mol⁻¹): H:1 O:16 C:12

Composition volumique de l'air : 80 % de diazote et 20 % de dioxygène

Volume molaire des gaz dans les conditions d'utilisation : $V_{mol} = 25 L / mol$

Masse volumique de l'éthanol : 800 kg / m³.

Effet de serre

- 1. Citer les principaux polluants rejetés par l'échappement des véhicules de type V_1 et de type V_2 .
- 2. Expliquer clairement ce qu'est l'effet de serre : mécanisme et conséquences.

Véhicule de type V₁

La consommation du véhicule est de $10\,L$ pour $100\,km$ à la vitesse stabilisée de $110\,km\,/\,h$. On assimilera l'essence à de l'octane de formule moléculaire C_8H_{18} et de densité 0,75.

On veut déterminer la masse de dioxyde de carbone ${\rm CO}_2$ rejetée par le véhicule roulant à une vitesse constante de $110~{\rm km}$ / h.

- 1. Ecrire l'équation bilan de la réaction de combustion de l'octane dans l'air, en supposant cette réaction complète.
- **2.** Calculer la masse de carburant consommée pour un parcours de 1 km. En déduire la quantité de matière correspondante (exprimée en moles de carburant).
- 3. Calculer le nombre de moles de ${\rm CO}_2$ rejetées pour un parcours de 1 km. En déduire la masse de ${\rm CO}_2$ correspondante.

Le pot catalytique

- 1. Expliquer brièvement ce qu'est un pot catalytique.
- 2. Ecrire l'équation bilan de la réaction d'oxydation du monoxyde de carbone CO en dioxyde de carbone CO₂.
- 3. Quels sont les autres polluants traités par le pot catalytique trois voies du véhicule de type V_1 ?

Véhicule de type V₃

Le dihydrogène nécessaire à la combustion peut :

soit être disponible en station service, préparé par reformage du gaz naturel (méthane). L'impact ${\rm CO}_2$ est alors de 77 g / km.

soit être obtenu à bord du véhicule par reformage à partir de bioéthanol par exemple. L'impact ${\rm CO}_2$ est alors de 126 g / km.

Le reformage de l'éthanol conduisant à la production du dihydrogène H_2 peut être représenté par l'équation bilan :

$$C_2H_6O \rightarrow C_2H_4O + H_2$$
 éthanol éthanal dihydrogène

- a) Calculer le nombre de moles de dihydrogène H_2 pour $1 \, \text{m}^3$ de dihydrogène ce volume étant mesuré dans les conditions normales de température et de pression.
- b) Calculer le volume d'éthanol qu'il faut traiter pour obtenir 1 m 3 de dihydrogène.

Bilan comparatif des impacts CO₂

La consommation du véhicule de type V_2 est de 8 L pour 100 km à la vitesse stabilisée de 110 km/h; son impact CO_2 , à cette vitesse, est de 209 g/km.

Comparer les impacts CO_2 des véhicules de type V_1 , V_2 et V_3 , ce dernier s'approvisionnant en carburant à la station service.

Réponses:

- Véhicule de type V₁
- 1. $C_8H_{18} + \frac{25}{2}O_2 \rightarrow 8CO_2 + 9H_2O$
- 2. masse de carburant : 75 g ; quantité de carburant : 0,66 mol
- 3. quantité de dioxyde de carbone : 5,3 mol ; masse de dioxyde de carbone : 232 g.
- Véhicule de type V₃

a) quantité d'éthanol : 44,6 molb) volume d'éthanol : 2,6 L

• Comparatif

véhicule	V_1	V_2	V_3
Impact	232 g / km	209 g / km	77 g / km