Épreuve d'électricité B.T.S. ETE 93

Moteur série

Un moteur série a pour fonctionnement nominal :

$$U_N = 1500 \text{ V}$$
 ; $I_N = 1500 \text{ A}$; $P_{u,N} = 2000 \text{ kW}$; $n_0 = 800 \text{ tr.min}^{-1}$.

A - Étude à vide :

Un essai à vide, en génératrice à excitation indépendante, à la fréquence de rotation $n_0 = 800 \text{ tr.min}^{-1}$, a donné les résultats suivants :

E ₀ (en V)	480	900	1200	1350	1470	1550	1640	1730
I (en A)	250	500	750	1000	1250	1500	1750	2000

E₀ représente la f.é.m. de l'induit ; I l'intensité du courant d'excitation.

Quelle est la valeur E_{0.N} de la f.é.m. à vide, dans les conditions nominales ?

B - Étude en charge :

1° question : Fonctionnement sous tension constante $U = U_N = 1500 \text{ V}$ pour un courant absorbé d'intensité I = 1500 A.

- a) Faire un schéma équivalent du moteur série.
- b) On donne : $-\text{résistance de l'induit} : R_a = 15 \text{ m}\Omega$;
 - résistance du circuit inducteur : $R_s = 5 \text{ m}\Omega$.

Calculer la f.é.m. E pour cette charge.

Sachant que E est proportionnelle à n, calculer la vitesse de rotation n, correspondant à cette charge.

- c) Calculer la puissance électromagnétique P_e et le couple électromagnétique Γ_e , développés par la machine.
- d) On estime que les pertes fer et les pertes mécaniques sont proportionnelles à la fréquence de rotation n ; au total, elles valent $P_p=120~kW$ à $n_0=800~tr.min^{-1}$. Calculer P_p et P_u ; en déduire le couple utile Γ_u .
- e) Calculer le rendement de la machine.
- **2°** question: Fonctionnement sous tension variable à couple constant.

Le moteur entraîne une charge dont le couple résistant est constant. Il absorbe ainsi un courant d'intensité constante.

- a) Pour I = 1500 A et n = 1000 tr.min⁻¹, calculer la valeur de U.
- b) A quelle valeur faut-il régler U pour que $n = 750 \text{ tr.min}^{-1}$?