# Fluides Énergies Domotique *Option : Domotique et Bâtiments Communicants*Epreuve E32 Physique et Chimie 2019

#### **Bâtiment Basse Consommation**

Un Bâtiment Basse Consommation, BBC, fait appel à plusieurs technologies afin d'obtenir une performance énergétique globale particulièrement élevée.

Ce type de maison est devenu la norme en France pour toutes les constructions neuves, depuis le Grenelle de l'environnement et la réglementation thermique qui en a découlé (actuellement RT 2012). L'objectif fixé depuis le 1er janvier 2013, pour les constructions neuves, est de ne pas dépasser une consommation en énergie primaire de 50 kWh.m<sup>-2</sup>.an<sup>-1</sup> pour le chauffage, la climatisation, la production d'eau chaude sanitaire, la ventilation et l'éclairage.

Les techniciens d'une entreprise de rénovation d'habitation dans le domaine énergétique ont installé des panneaux photovoltaïques et une pompe à chaleur afin d'assurer la quasi-totalité des besoins énergétiques de l'habitation : production d'électricité, chauffage et fourniture d'eau chaude. Le complément est assuré par le fournisseur d'électricité.



#### www.nchabitat.com

Cette rénovation a été réalisée sur une habitation de surface égale à 150 m² dans la ville de Niort en France où l'éclairement énergétique moyen (ou irradiance) est d'environ 1000 W.m².

Le sujet qui suit aborde différents aspects de la rénovation.

Il comporte deux parties indépendantes qui peuvent être traitées séparément.

#### A - Production d'électricité

Les panneaux solaires photovoltaïques (panneaux PV) recouvrant la toiture sont des modèles Photowatt PW1650.

Un panneau PV permet de transformer l'énergie fournie par le soleil en énergie électrique. Chaque panneau peut fournir une puissance maximale  $P_{max}$  égale à 165 W .



http://www.meteoslins.be/photovoltaique03.php

#### I - Caractéristique d'un panneau photovoltaïque

- 1. Citer des avantages et des inconvénients de ce système de production d'électricité.
- 2. Pour tester le bon fonctionnement du panneau PV, on le branche sur une charge résistive.

On veut tracer les variations de l'intensité I du courant fourni par le panneau en fonction de la tension U aux bornes de la charge, pour un éclairement énergétique constant de  $1000\,\mathrm{W.m}^{-2}$ .

Proposer le schéma du montage en indiquant les appareils de mesure, leur branchement et la position du commutateur (AC ; DC ; AC+DC).

3. On relève en sortie du panneau un courant d'intensité I égale à  $4,5\,\mathrm{A}$  sous une tension U égale à  $26\,\mathrm{V}$ . Indiquer si ces valeurs sont cohérentes avec la caractéristique constructeur fournie dans l'annexe 1. Donner une explication aux éventuels écarts.

II - Surface de l'installation photovoltaïque

L'insolation annuelle moyenne en France est d'environ 1400 kWh.m<sup>-2</sup>.

Ce type de panneau convertit 10 % de l'énergie solaire en énergie électrique.

Cette partie sera traitée en s'aidant de l'annexe 1.

- 1. Vérifier que la surface S d'un panneau est proche de 1,34 m<sup>2</sup>.
- **2.** L'énergie électrique annuellement consommée par l'habitation de 150 m<sup>2</sup> et produite par les panneaux PV est estimée à 2200 kWh .

Déterminer le nombre minimum de panneaux PW1650 nécessaires après avoir expliqué la démarche choisie.

III - Rendement de la chaîne d'énergie photovoltaïque Electrosun

Cette partie sera traitée en s'aidant des annexes 1, 2 et 3.

L'installation photovoltaïque est constituée de 12 panneaux solaires, d'un régulateur de tension et d'un onduleur de référence Fronius IG15.

- 1. Indiquer le rôle des différents éléments constituant le système d'énergie photovoltaïque Electrosun.
- 2. L'installation électrique de l'habitation présente un facteur de puissance égal à 0,9.

On a relevé, pour un éclairement de 1000 W.m<sup>-2</sup>, les grandeurs électriques en sortie de l'onduleur.

$$U_a = 230 \text{ V}$$
;  $I_a = 6.5 \text{ A}$ 

La puissance solaire reçue par les panneaux est de 13200 W.

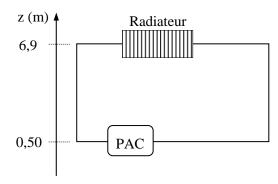
Déterminer le rendement  $\eta_{syst}$  du système global pour un ensoleillement de  $1000~W.m^{-2}$ .

#### B - Pompe à chaleur de l'habitation

Pour chauffer l'habitation, l'entreprise de rénovation a installé une Pompe à Chaleur (PAC).

La PAC est un dispositif thermodynamique permettant de transférer la chaleur du milieu le plus froid (ici l'air extérieur) vers le milieu le plus chaud (ici la maison) via un échangeur.

Cette partie sera traitée en s'aidant des annexes 4 à 6.


I - Pression dans les canalisations

La PAC a été installée dans la chaufferie située au sous-sol de l'habitation.

Pour simplifier notre étude, on considère un seul radiateur.

Les pertes de charge sont négligées.

Le schéma simplifié d'implantation est donné ci-après.



A la sortie de la PAC, la conduite a un diamètre  $d_1$  égal à 20 mm.

L'eau monte dans un radiateur par une conduite de diamètre  $\,\mathrm{d}_2\,$  égal à 12,0 mm .

Le débit volumique  $Q_v$  est constant et est égal à  $20\,L.min^{-1}$ . L'eau sort du dispositif de chauffage à la température de  $70\,^{\circ}C$ .

On suppose que la conduite est parfaitement calorifugée et que la température de l'eau à l'entrée du radiateur est toujours égale à  $70\,^{\circ}\text{C}$ .

A la sortie du radiateur, la température de l'eau prend la valeur de 50 °C qui est conservée sur toute la canalisation de retour.

- 1. Calculer la vitesse  $v_1$  de l'eau à la sortie de la PAC et sa vitesse  $v_2$  à l'entrée du radiateur.
- **2.** La pression  $p_1$  à la sortie de la PAC est égale à 3,0 bar .

Calculer la valeur de la pression p<sub>2</sub> à l'entrée du radiateur et l'exprimer en bar.

Données : Masse volumique moyenne de l'eau entre les températures de 45 °C et 80 °C :

$$\rho = 982 \text{ kg.m}^{-3}$$
.

#### II. Protection contre le bruit

La PAC est considérée comme une source sonore omnidirectionnelle.

Le niveau de puissance acoustique (ou sonore)  $L_W$ , en dB(A), caractérise la capacité d'émission sonore de la source indépendamment de son environnement.

Cette puissance acoustique est mesurée en laboratoire.

C'est la valeur qui permet de comparer directement les appareils entre eux.

Le niveau de pression acoustique (ou sonore)  $L_p$ , en dB(A), est la grandeur acoustique perçue par l'oreille humaine et mesurée par le sonomètre.

Pour une source donnée, la pression acoustique dépend de l'environnement d'installation et de la distance à laquelle on réalise la mesure.

- 1. Décrire le protocole expérimental permettant de déterminer l'évolution du niveau sonore quand on s'éloigne à une distance de 1,0 m de l'unité extérieure de la PAC.
- 2. Le niveau d'intensité sonore  $L_I$  du groupe extérieur de la PAC est égal à 51 dB.

Montrer que l'intensité acoustique I est égale à  $1.3 \times 10^{-7}~\mathrm{W.m}^{-2}$  .

3. Le niveau de puissance acoustique de la PAC est de  $L_W = 60 \, dB(A)$ .

Expliquer comment on peut vérifier que la PAC ne respecte pas la préconisation du niveau de pression acoustique, dans le cas de l'habitation placée en zone urbaine, en utilisation nocturne.

Calculer les différentes grandeurs à déterminer.

**4.** Rédiger un rapport à destination du chef de service pour expliquer le problème identifié précédemment et proposer au moins deux solutions envisageables afin d'améliorer l'installation, en respectant les contraintes de fonctionnement de la PAC.

#### Annexe 1 : Doc. Constructeur des Panneaux Photovoltaïque PW1650 – 12/24V

Le module PW1650 est le module haut rendement de la gamme 5 pouces. Facile à manier grâce à une taille optimisée, le PW1650 est spécifiquement développé pour les applications raccordées au réseau.

Le PW1650 utilise la technologie des cellules multicristallines PHOTOWATT. Les cellules solaires sont mesurées individuellement et triées électroniquement avant d'être interconnectées. L'encapsulation des cellules est réalisée entre une plaque de verre trempé et une feuille de Tedlar. L'encapsulant, de l'EVA résistant aux UV, enrobe les cellules photovoltaïques à l'intérieur des laminés et protège les cellules de la corrosion. La face arrière du module est étanche et protégée des dommages mécaniques par une feuille polymère continue et résistante.

Cette gamme de produits utilise un cadre renforcé en aluminium anodisé, développé pour répondre aux exigences qualité de Photowatt en matière de résistance à la corrosion (durée de vie 3 fois supérieure aux exigences de la norme IEC61215).

Avec un centrage des tolérances à +/-3%, le PW1650 garantit l'homogénéité de puissance de vos installations, et un investissement financier correspondant réellement aux watts produits.

Une version 12V et une version UL sont disponibles sur demande.

PUISSANCE: +/- 3% **GARANTIE PUISSANCE: 25 ANS\***  GARANTIE PRODUIT : 5

| PW1650                                                  |   | Configuration 24 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |      | Configuration 12 V |      |      |
|---------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------|------|------|
| Puissance typique                                       | w | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 165  | 175  | 155                | 165  | 175  |
| Puissance minimale                                      | w | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160  | 170  | 150                | 160  | 170  |
| Tension à la puissance typique                          | ν | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34,4 | 35   | 17                 | 17,2 | 17,5 |
| Intensité à la puissance typique                        | Α | 4,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,8  | 5    | 9,2                | 9,6  | 10   |
| Intensité de court circuit                              | Α | 4,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,1  | 5,3  | 9,6                | 10,2 | 10,6 |
| Tension en circuit ouvert                               | v | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 43,2 | 43,4 | 21,5               | 21,6 | 21,7 |
| Tension maximum du circuit                              | ν | 770V DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |      |                    |      |      |
| Coefficient de température                              |   | $\alpha = +1.46 \text{ mA/C}; \beta = -158 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \alpha = +2.92 \text{ mA/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ %/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma \text{ P/P} = -0.43 \text{ M/C}; \beta = -79 \text{ mV/C}; \gamma  $ |      |      |                    |      |      |
| Specifications de puissance à 1000 W/m2 : 250C : AM 1.5 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |      |                    |      |      |



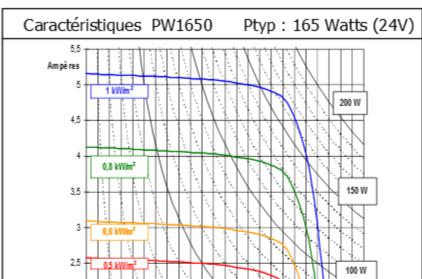


1.5

0.5

0.2 kW/m<sup>2</sup>



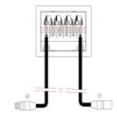







\*Selon les conditions générales de garantie

Informations sujettes à évolutions - Demière mise à jour : 02/09/03

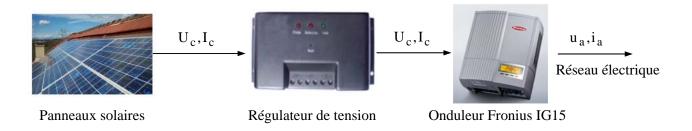



0 2 4 6 8 10 12 14 16 18 20 22 24 28 28 30 32 34 36 38 40 42 44 46 48 F(V) à T = 25°C en fonction de l'irradiance E (kW / m²), AM 1,5.

- ◆ Poids du Module: 18 kg
- Taille du Module: 1237 x 1082 x 45 mm
- → Emballage par 2 unités : 1350 mm x 1130 mm x 102 mm, 39 Kg
- ◆Taille maximum d'une palette (34 modules): 1360 mm x 1130 mm x 1770 mm, 678kg



Câbles de Ø 2,5 mm²




Module protégé par 4 diodes anti-retour (1 pour 18 cellules)

50 W

Volts

#### Annexe 2 : Chaîne d'énergie photovoltaïque Electrosun



#### **Annexe 3**: Onduleur Fronius IG15

#### LA FAMILLE FRONIUS IG EN RESUME.

# Fronius IG. Une gamme d'onduleurs PV fiables.

Performante, conviviale et hautement fiable, la série des onduleurs Fronius IG est présentée sous une forme compacte. Prévus pour chaque taille d'installations, les différents modèles peuvent être combinés de multiples manières. Le système de commande très étudié du processeur puise, en liaison avec le puissant transformateur HF, le maximum d'énergie de tous les types de modules.

#### Fronius IG 60 HV. Le paquet de puissance.

Un rendement maximum grâce au concept MIX<sup>TM</sup>, qui répartit le travail entre deux étages de puissance, liée de manière optimale dans un système maître-esclave. En charge partielle seule une des deux parties travaille, tandis qu'à pleine charge les deux parties fonctionnent ensemble. Les avantages pour vous: Augmentation sensible du rendement tout en diminuant les heures de fonctionnement de chaque carte.

## Fronius IG Outdoors. Il résiste aux intempéries.

Le Fronius IG Outdoors est spécialement fabriqué pour l'emploi à l'extérieur, II a été testé pour répondre au type de protection IP45. Par exemple une circulation d'air permanente empêche l'accumulation d'eau de condensation. De même, il est protégé contre la pénétration de corps étrangers solides et contre les jets d'eau. Une couche de vernis protège les cartes électroniques et permet son utilisation à proximité de la mer.

#### QUELQUES POINTS TECHNIQUES.

Naturellement la gamme des onduleurs Fronius IG remplit toutes les directives et normes nécessaires. Des informations complémentaires, ainsi que les certificats sont téléchargeables sous le répertoire «Downloads» du site www.fronius.com. Tous les onduleurs Fronius IG sont naturellement marqués **CÉ**.

| CARACTERISTIQUES TECHNIQUES                   | Fronius IG 15                                                             | 20             | 30             | 40             | 60 HV             |  |
|-----------------------------------------------|---------------------------------------------------------------------------|----------------|----------------|----------------|-------------------|--|
| Gamme de tension-MPP                          | 150 - 400 V                                                               | 150 - 400 V    | 150 - 400 V    | 150 - 400 V    | 150 - 400 V       |  |
| Tension d'entrée max. (avec 1000 W/m2; -10°C) | 500 V                                                                     | 500 V          | 500 V          | 500 V          | 530 V             |  |
| Puissance du dispositif PV                    | 1300 - 2000 Wc                                                            | 1800 - 2700 Wc | 2500 - 3600 Wc | 3500 - 5500 Wc | 4600 - 6700 Wc    |  |
| Puissance nominale                            | 1300 W                                                                    | 1800 W         | 2500 W         | 3500 W         | 4600 W            |  |
| Puissance de sortie max.                      | 1500 W                                                                    | 2000 W         | 2650 W         | 4100 W         | 5000 W            |  |
| Rendement max.                                | 94,2 %                                                                    | 94,3 %         | 94,3 %         | 94,3 %         | 94,3 %            |  |
| Rendement Euro                                | 91,4 %                                                                    | 92,3 %         | 92,7 %         | 93,5 %         | 93,5 %            |  |
| Tension de réseau / Fréquence                 | 230 V / 50 Hz                                                             |                |                |                |                   |  |
| Taille (I x b x h)                            | 366 x 344 x 220 mm (500 x 435 x 225 mm) 610 x 344 x 220 mm (733 x 435 x 2 |                |                |                | 3 x 435 x 225 mm) |  |
| Poids                                         | 9 kg (12 kg) 16 kg (20 kg)                                                |                |                |                | kg)               |  |
| Refroidissement                               | ventilation forcée régulée                                                |                |                |                |                   |  |
| Boîtier                                       | Boîtier intérieur « Designer » ; en option boîtier externe                |                |                |                |                   |  |
| Domaine de température ambiante               | -20 50 °C                                                                 |                |                |                |                   |  |

### **Annexe 4** : Formulaire mécanique des fluides

| Conservation de l'énergie dans un fluide s'écoulant entre deux points 1 et 2 :                                                             |                                                                                                                                                     |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| sans pompe<br>$\frac{1}{2} \frac{v_1^2}{g} + \frac{p_1}{\rho g} + z_1 = \frac{1}{2} \frac{v_2^2}{g} + \frac{p_2}{\rho g} + z_2 + \Delta J$ | avec pompe<br>$\frac{1}{2} \frac{v_1^2}{g} + \frac{p_1}{\rho g} + z_1 + H_{MT} = \frac{1}{2} \frac{v_2^2}{g} + \frac{p_2}{\rho g} + z_2 + \Delta J$ |  |  |  |  |
| <ul> <li>p : pression statique (en Pa)</li> <li>ρ : masse volumique du fluide (en kg·m<sup>-3</sup>)</li> </ul>                            | H <sub>MT</sub> : hauteur manométrique fournie par la pompe (en mCF)                                                                                |  |  |  |  |
| z : altitude (en m) v : vitesse du fluide (en m·s <sup>-1</sup> )                                                                          | $\Delta J$ : pertes de charge entre 1 et 2 (en mCF)<br>Accélération de la pesanteur : $g = 9.81 \text{ m} \cdot \text{s}^{-2}$                      |  |  |  |  |

## **Annexe 5**: Niveaux acoustiques

| Niveau d'intensité                                                       | Niveau de pression                           | Niveau de puissance                                 |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|--|--|--|
| acoustique L <sub>l</sub>                                                | acoustique L <sub>P</sub>                    | acoustique L <sub>W</sub>                           |  |  |  |
| $L_{I} = 10 \cdot log\left(\frac{I}{I_{0}}\right)$                       | $L_p = 20 \log \left( \frac{P}{P_0} \right)$ | $L_W = 10 \cdot log\left(\frac{P_a}{P_{a0}}\right)$ |  |  |  |
| I : Intensité acoustique                                                 | P : Pression acoustique                      | Pa : Puissance acoustique                           |  |  |  |
| (W⋅m <sup>-2</sup> )                                                     | (W·m⁻²)                                      | (W)                                                 |  |  |  |
| I <sub>0</sub> : Intensité acoustique                                    | $P_0$ : Pression acoustique                  | <i>P</i> <sub>a0</sub> : Puissance acoustique       |  |  |  |
| de référence                                                             | de référence (2,0.10 <sup>-5</sup> Pa)       | de référence (1,0.10 <sup>-12</sup> W)              |  |  |  |
| (1,0.10 <sup>-12</sup> W·m <sup>-2</sup> )                               | W.T.                                         |                                                     |  |  |  |
| $L_W = L_P + 10 \cdot log(2\pi . R^2)$                                   |                                              |                                                     |  |  |  |
| R : distance, en m, entre la source de bruit et la position de la mesure |                                              |                                                     |  |  |  |
| در) ا                                                                    |                                              |                                                     |  |  |  |

|  | <i>I</i> : Intensité sonore en W⋅m⁻²  P : Puissance sonore en W |
|--|-----------------------------------------------------------------|
|  | S: surface en m <sup>2</sup>                                    |

Annexe 6 : Niveau maximum de pression acoustique  $L_P$  à  $\pm$  5 dB mesuré à 1,0 m de la PAC préconisé. D'après la fiche technique n°1 : Pompes à chaleur & environnement acoustique éditée par l'AFPAC

| Type de Zone                                                                                                                                                           | Jour  | Intermédiaire | Nuit  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-------|
| Zone d'hôpitaux, zone de repos,<br>aires de protection d'espaces naturels                                                                                              | 45 dB | 40 dB         | 32 dB |
| Résidentielle, rurale ou suburbaine, avec faible circulation de trafic terrestre, fluvial ou aérien                                                                    | 50 dB | 45 dB         | 37 dB |
| Résidentielle urbaine                                                                                                                                                  | 55 dB | 50 dB         | 42 dB |
| Résidentielle urbaine ou suburbaine,<br>avec quelques ateliers ou centres d'affaires,<br>ou avec des voies de trafic terrestre,<br>fluvial ou aérien assez importantes | 60 dB | 55 dB         | 50 dB |
| Zone à prédominance d'activités commerciales, industrielles                                                                                                            | 65 dB | 60 dB         | 55 dB |
| Zone à prédominance industrielle (industrie lourde)                                                                                                                    | 70 dB | 65 dB         | 60 dB |